يبحث كثير من الطلاب على بحث عن التحويلات الهندسية والتماثل، من اجل التعرف على التحويلات الهندسية والتماثل، والتفرقة بينهم، هذا الامر الذي يجعلهم يقفون حائرين في عدم القدرة على التعبير او القيام بعمل بحث كامل عن التحويلات الهندسية والتماثل، حيث يطلب دوما المعلمون من الطلاب القيام بعمل الابحاث العلمية التي عليها الدرجات العالية من اجل زيادة درجاتهم في النشاط، ويتشجع الطلاب في البداية على عمل هذه الابحاث، ويصطدمون في عدم القدرة على معرفة كيفية البداية في مثل هذه الابحاث، لذلك سوف نقوم عبر مقالنا بمساعدة الطلاب على القيام ببحث عن التحويلات الهندسية والتماثل.
التحويلات الهندسية والتماثل
التحويل هو عبارة عن دالة رياضية من مجموعة X الى نفسها، وعلى الغالب تكون مجموعة X لها هيكلية جبرية او هندسية اخرى، ويصبح تعريف التحويل بالدالة التي حول X الى نفسها مع الاحتفاظ بهيكليتها ومن الامثلة التحويل الخطي والتحويل الافيني مثل الدوران والانعكاس والازاحة.
التحويل الايزومتري هو تحويل متساوي القياس وهو تحويل او نسخ لنقاط المستوى وحفظ الابعاد بين النقاط، بشكل حدسي يمكن النظر الى هذه التحويلات على انها حركة لنقاط المستوى .
التماثل هو عبارة عن خاصية يمكن من خلالها وصف العديد من الاشياء التي مثل الاجسام الهندسية والمعادلات الرياضية وغيرها، والتماثل صفة يتصف بها الانسان، حيث ان الانسان له يدان ورجلان وعينان واذنين، اي نصفه اليميني يماثل النصف اليساري شكلا، وبشكل عام نقوم ان جسم ما متماثل بالنسبة لعملية ما، واذا كان تطبيق العملية لا يحدث فيه اي تغير يمكن اطلاق وصف التماثل على اي جسم او بنية فنقول انها متماثلة بالنسبة للعملية كذا، والعملية تكون بسيطة وبديهية مثل دوران شكلا هندسيا او دائرة حول قطرها او يمكن ان يكون تحويلا لمعادلات .
ويمكن ان يكون الشكل متماثلا اذا وحد انعكاس او ازاحة او دوران او تركيب انعكاس او ازاحة ونتج عنها صورة منطبقة على الشكل نفسه وهو تماثل حول محور، ويكون الشكل الثنائي الابعاد متماثل حول محوره، وتنتج عن انعكاس حول مستقيم ما هي الشكل نفسه ويسمى بالمستقيم محور التماثل، ويكون الشكل الثنائي الابعاد يمثل دوراني او تماثل نصف قطري اذا نتج عن دوران بين دوران 0 و 360 درجة حول المركز ويسمى مركز الدوران في هذه الحالة مركز التماثل.